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ABSTRACT 

Power-to-Gas (P2G) is an emerging technology aiming to contribute towards addressing the climate change and 

environmental degradation. Yet, numerous factors need to be taken into consideration to for practical P2G applications. 

Digital Twins (DT) are used for simulation and optimization purposes, allowing investigation and prediction of their  

short-, medium- and long-term results. This paper presents a DT architecture, namely TwinP2G, that aims to couple the 

electrical power and natural gas sector by enabling multi-resolution simulations and optimization relating to the integration 

of P2G plants and regenerative hydrogen fuel cells (RHFC) in the power grid. The suggested solution is meant to be applied 

initially in the Greek energy system enabling data- and simulation-driven P2G and fuel cells optimal planning and  

techno-economic analyses. This piece of work concludes with future application plans and application development 

perspectives. 
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1. INTRODUCTION 

Climate change along with the growing population, the increase in electrical energy consumption and the 

depletion of resources have led to a large-scale deployment of Renewable Energy Sources (RES), increasing 

their energy share worldwide (Lewandowska-Bernat & Desideri, 2018). Numerous RES technologies have 

significantly progressed in technical and economic maturity over the past few decades. Yet, their fluctuating 

and intermittent nature raised concerns related to the balancing and capacity adequacy of an energy supply 

configuration relying mostly on RES (Varone & Ferrari, 2015). The necessity of increasing the flexibility of 

the existing bulk system has led researchers to investigate new methodologies to fully exploit the production 

of RES in the context of water pumping stations (Sarmas, Spiliotis, et al., 2022), supply to the energy system 

(Karakolis et al., 2022; Mazza et al., 2018) and so on.  

Towards that end, the P2G technology has arisen unveiling various possibilities. P2G uses renewable or 

excess electricity to produce hydrogen via water electrolysis (Robles et al., 2018). This hydrogen can be used 

directly as a final energy carrier for electricity, mobility (fuel cells powering electric vehicles) and heat, 

converted to methane, liquid fuels, or chemicals (Gahleitner, 2013) or even stored in fuel cells to be later 

reconverted into electricity. Thus, they would satisfy the need for long-term energy storage by converting it to 

other easily storable energy carriers, and at the same time reduce the load of the electricity grid by their 

controlled operation. 

Hydrogen offers a great variety of alternatives in its production, transportation, and distribution.  

Its multi-dimensional benefits triggered the development of multi-energy systems’ modelling approaches to 

assess the technical, economic, and system-level challenges of integrating hydrogen into the overall energy 

system (Fu et al., 2020). Terms such as HIGG (Hydrogen Injection into the Gas Grid) soon arose along with a 

variety of research, modelling and real-life demonstrator projects exploring the possibilities of Green Hydrogen 

(hydrogen produced by renewable excess) in conjunction with other energy systems 

 (ENTSO-G & ENTSO-E, 2018; Gondal, 2019; Quarton & Samsatli, 2018).  



Over the past decades, several P2G plants have been developed (Quarton & Samsatli, 2018), numerous 

hydrogen demonstration projects have been funded (Diaz-Londono et al., 2020; Everywh2ere, 2022; H2Haul, 

2022), and several studies and research efforts have been documented, exploring green hydrogen’s potential 

and variations. P2G optimization and simulation techniques and models have been used in many scenarios over 

Europe. This paper aims to present the methodological approach towards developing a P2G digital twin (DT) 

in Greece with short-, medium- and long-term optimization goals and perspectives.    

This paper presents a conceptual DT architecture, namely called TwinP2G, aiming to promote hydrogen 

and accelerate the energy transition via P2G technologies. Section 2 presents a literature review aiming to shed 

light on the current state-of-the-art P2G approaches and methodologies, DTs, and relevant software. In Section 

3, the case study details, and application architecture are presented. Finally, Section 4 concludes with a 

discussion relating to the challenges of P2G and future steps related to the research objectives of this.  

2. LITERATURE REVIEW 

During the last few years many studies have focused on developing several optimization models for P2G 

applications (Quarton & Samsatli, 2018). Most of them develop complex optimization models, while others 

focus on simulation. With respect to optimization, the most widely used methods are Linear Programming (LP) 

(Dodds & Demoullin, 2013), Mixed Integer Linear Programming (MILP) (Almansoori & Shah, 2012) and 

Non-Linear Programming (NLP) (Clegg & Mancarella, 2016). Simulation, on the other hand, is the process of 

modeling a scenario and finding the outputs of a system based on a given set of inputs. Such models may run 

several different scenarios, as in the case of (Abeysekera et al., 2016) which provided a simulation method for 

gas networks with injection of upgraded biogas and hydrogen. Usually, simulation models are tightly linked 

with DTs. The selection of the objectives for P2G optimization problems is another interesting aspect. Although 

most of the developed models target towards minimizing the total operation costs, there are a few focusing on 

minimizing CO2 emissions (Mesfun et al., 2017) or even fuel consumption (Tabkhi et al., 2008). Moreover, 

the decisions supported by most of these models focus on long-term policy, proposing the degree of penetration 

of each technology per year or decade. A thorough techno-economic analysis of P2G scenarios is conducted in 

(Fambri et al., 2022). It seems that the existing state of the literature shows the urgent need for designing 

modern, data- or simulation- driven applications and models for assisting the successful penetration of P2G 

technologies. In this direction, the PLANET project  (Schröder et al., 2018) aimed to leverage energy 

conversion technologies for optimal grid planning towards full energy system decarbonization. Specifically, 

Diaz-Londono et. al develop a real-time platform for P2G integration in electrical distribution grids, enabling 

a quasi-automatic creation of case studies and using digital simulation technologies and proprietary software, 

such as eMEGASIM, RT-LAB, and Matlab / Simulink (Diaz-Londono et al., 2020). Although most studies 

have focused on the process of converting surplus renewable energy into hydrogen gas, the case of fuel cells 

should be considered as well. Fuel cells operate like a conventional storage system, differing in that they do 

not need recharging (Smith, 2000). Fuel cells can produce electricity if enough fuel is supplied, thus being one 

of the most promising storage solutions for the near future. The optimization models used in the case of fuel 

cells do not significantly differ from the aforementioned ones. Typical examples of exploited optimization 

models are multi-objective genetic algorithms (Ehyaei & Rosen, 2019) and multi-objective probabilistic 

analysis algorithms (Zhou et al., 2022), among others.  

With respect to DTs, they comprise digital representations of physical objects (processes, or services) which 

facilitate the planning, management, and optimization of complex and new activities (Batty, 2018). DTs are 

recently gaining significant popularity in the energy sector for purposes such as smart grid development, RES 

management, and distributed generation control (Borowski, 2021). It should be noted that a DT does not make 

any decisions by itself, but rather generates insights through post-processing that support decision making. As 

more and more data are becoming available through advancements in IoT devices and smart sensors, the 

combination of a physical object and its digital mapping in virtual space can be combined with big volumes of 

data to facilitate informed decision-making in the energy domain. A series of recent studies on DTs for  

energy-related topics is presented by (Onile et al., 2021). Some of the most recent studies include the 

development of a DT for hybrid renewable energy systems (Andryushkevich et al., 2019), a regression-based 

DT for university campus’ power supply (Francisco et al., 2020) and DT-based energy management systems 

(Brosinsky et al., 2018), (Zhou, Yan and Feng, 2019). Gerrard et al. (Gerard et al., 2022) focused on a  



data-driven DT, for mitigating the uncertainties and risks associated with green hydrogen facilities design as 

an investment, which also calculates financial indicators (e.g., internal rate of return) through stochastic 

simulations using the Monte Carlo method.  

From a technical perspective, in the domain of P2G oriented optimal grid planning (simulation and 

optimization), several open-source tools are currently available and used within a multitude of related research 

studies. A rather extensive review of those tools can be found in the PyPSA whitepaper (Brown et al., 2017). 

Indicatively, open-source grid simulation tools include PyPSA, Pandapower (Thurner et al., 2018), 

MATPOWER (Zimmerman et al., 2011) and DPSIM (Mirz et al., 2019), while Pandapipes (Lohmeier et al., 

2020) can serve in creating coupled power and natural gas systems (Lu et al., 2021; Qadrdan, 2012). Several 

of them, such as PyPSA also include cost-based optimization capabilities usually leveraging optimization 

techniques and specifically tools such as Pyomo (Bynum et al., 2021). Some well-known solvers for linear 

programming are GLPK, CPLEX, and Gurobi (Meindl & Templ, 2014) and they can be used in these scenarios. 

Regarding macroscopical and long-term modelling and optimization, a variety of energy system modelling 

tools that are usually disconnected from optimal power flow analysis and are most linked with national energy 

planning strategies, are available. Linear programming remains the dominant optimization method within this 

scope of these applications, such as OseMosys (Howells et al., 2011) (written in GNU MathProg), Nemo 

 (SEI, 2020) (written in Julia), and EnergyPLAN EU (Lund et al., 2021) (written in Delphi Pascal). 

3. CASE STUDY AND APPLICATION ARCHITECTURE 

The proposed case study takes place in Greece in the context of the ENERSHARE (Enershare | The Energy 

Data Space for Europe, 2022) project funded by the EC and involves both the natural gas and electrical power 

national transmission and distribution networks managed by DESFA (Desfa, 2022 and IPTO (IPTO, 2022) 

respectively. The objective of the case study is to form a digital simulation and optimization platform, named 

TwinP2G, coupling the electricity transmission system with natural gas demands, leveraging a DT architecture 

that will enable multi-resolution simulations involving P2G technologies and regenerative hydrogen fuel cells 

(RHFC) (Pellow et al., 2015). TwinP2G will enable data- and simulation-driven P2G and RHFC optimal 

planning for using the RES surplus for green hydrogen production via electrolysis. 

3.1 High-Level Architecture 

The TwinP2G architecture is shown in Figure 1. A Platform-as-a-Service (PaaS) design is proposed. The 

architecture serves multiple user roles while it is composed of various subcomponents using a many  

state-of-the-art technologies that is further analyzed in the following sections. 



 

Figure 1. The high-level architecture of TwinP2G 

3.1.1 Data Sources and Integration Process 

For developing a DT application, data integration is a core process. It enriches the local data warehouse with 

new datasets that in turn improve the results of its main functionalities, therefore leading to up-to-date forecasts 

and simulation scenarios. TwinP2G mainly employs integration mechanisms based on Data Connectors (IDSA 

Data Connector Report, 2022; Qarawlus et al., 2021), as established by International Data Spaces (IDSA) 

 (Otto et al., 2019) that will be further developed within the ENERSHARE project. In the conceptual 

architecture of Figure 1, TwinP2G receives data from IPTO (electrical power demand, RES generation,  

long-term grid planning, electrical grid topologies), DESFA (hourly / daily gas flows at entry and exit points, 

natural gas grid topologies) and other organizations (e.g. Eurostat, local and national grid topologies etc.) 

through Dataspace Connectors. Specifically, it acts as a data consumer, while the other organizations act as 

data providers. All the organizations involved need have a dataspace connector deployed in their infrastructure.  

Of course, traditional data ingestion methods are followed whenever the development of bidirectional Data 

Connectors is not feasible. 

3.1.2 Multi-Horizon Simulation and Optimization 

The Simulation core of the DT application involves physics- and data- driven simulation and optimization 

capabilities, allowing for extensive techno-economic analyses. In this context, the PyPSA open-source power 

system modelling tool is used as the short-term / mid-term simulation and optimization core of the DT. PyPSA 

can serve optimal power flow simulation based on network equations, security constraints and even least-cost 

(investment) optimization. Amongst the available models P2G and storage units with efficiency losses (suitable 

for RHFC) are of specific interest for the use case in question. Regarding multi-horizon dynamic investment 

optimization over several years (long-term projection), as PyPSA seems to have fallen behind, the OSeMOSYS 

open-source modelling system is selected, as it enables long-run integrated assessment and energy planning, 



also suitable for crisis modelling (Karamaneas A. et al., 2022). From a mathematical perspective, OSeMOSYS 

is a deterministic, long-term modeling framework based on linear optimization (linear programming and 

mixed-integer linear programming). The “Simulation and Optimization” component processes historical time 

series of renewable generation and production alongside power and gas demands originating from the data 

warehouse. It also uses forecasts produced by the “Forecasting” component creating projections within an 

optimization horizon. Local grid topologies in Greece with envisaged investments for P2G components is the 

main field of study within the “Simulator and Optimization" component. Pandapipes will also be considered if 

gas pipeline simulation is deemed necessary through the progress of the use case. With respect to optimization 

objectives, the following will be investigated in terms of optimal capacity and location: electrolysers 

 (ENTSO-E, 2022), fuel cells, methanation reactors and hydrogen buffers (storage). 

3.1.3 Forecasting 

The forecasting component of TwinP2G is an MLOps (Sridhar et al., 2021) framework that has been developed 

within the I-NERGY H2020 project (Karakolis et al., 2022). The toolkit is based on a machine learning pipeline 

written in Python programming language that enables experimentation and evaluation of various machine 

learning and deep learning algorithms, such as XGBoost, Random Forest, NBEATS, Temporal Convolutional 

Networks (TCN) and Long Short-Term Memory (LSTM) networks as demonstrated in a recent work that dealt 

with a short-term load forecasting use case (Pelekis et al., 2022). The main technologies leveraged are MLflow 

(Alla & Adari, 2021) as the MLops platform, Darts (Herzen et al., 2021) as the time series forecasting 

framework, MinIO (MinIO, 2022) and PostgreSQL (PostgreSQL, 2022) as artifact storage and logging 

database respectively, FastAPI (FastAPI, 2022) as the API development framework, Javascript React 

 (React, 2022) for developing the front-end. The forecasting platform in question can handle all type of time 

series and integrate new datasets with little to no extra development, hence allowing to easily handle the 

timeseries data ingested in TwinP2G (see Section 3.2.1) and providing forecasts of various (short-, mid-,  

long-term) horizons. Moreover, supplementing the existing forecasting models, novel practices in the field of 

machine learning can be used, including incremental analytics for periodically re-training existing models 

(Sarmas, Strompolas, et al., 2022), as well as transfer learning to handle cases with insufficient data  

(Sarmas, Dimitropoulos, et al., 2022). 

3.1.4 Application Front-end and Security Framework 

TwinP2G serves two main user roles/personas. The first persona is the “Data Scientist”, who is assumed to be 

an experienced user with scientific and coding background alongside modelling capabilities of P2G use cases. 

This user can enter the “Data Science Platform” provided by TwinP2G to interface with the “Simulation and 

Optimization” component to develop P2G experiments and visualize their results (simulation and optimization 

results, forecasting accuracies, etc.). Additionally, the “Data Scientist” can configure the desired types of 

interactive analytics visualizations to be displayed to the Energy Engineer persona. Specifically, Streamlit 

(Streamlit, 2022) is a candidate high-level technology for serving this purpose. However, more advanced 

technologies, such as Apache Superset (Superset, 2022) and MATRYCS (Pau et al., 2022) Visualization 

Engine (Kormpakis et al., 2022) are also under investigation. The second persona is the “Energy Engineer” 

who is considered an end-user with knowledge and understanding of energy systems but limited coding and 

modelling skills. This persona uses the “Visualization Engine” component to monitor simulation and forecast 

results and metrics leveraging them for decision support regarding future P2G investments. 

Ultimately, an identity/access management mechanism is the basis of TwinP2G’s security. This has  

end-to-end processes, approaches, and technologies for user identification, authentication, and authorization. 

They ensure that the personas are allowed to access the appropriate resources. For this, the Keycloak (Keycloak, 

2022) technology has been considered. 

4. DISCUSSION 

This work proposes a conceptual, innovative DT architecture, named TwinP2G to promote hydrogen and to 

accelerate the energy transition through P2G technologies. TwinP2G allows modelling multiple scenarios for 

green hydrogen production and storage as a flexibility provider and as an enabler for higher RES integration 

(directly through hydrogen fuel cells indirectly through the gas pipeline). The architecture has four main 



components, namely: i) a data warehouse that integrates open data mainly through IDSA technologies;  

ii) a simulation platform with state-of-the-art power and energy simulation and optimization technologies;  

iii) an MLOps-powered forecasting toolkit, for profiling, analyses and forecasts of electricity and gas 

quantities; iv) a front-end application that serves two user roles; a) a data scientist that can perform simulations 

and experiments by coding and b) an energy expert with limited coding skills that can inspect and visualize the 

high-level experiment results. 

In conclusion, TwinP2G envisages addressing and overcoming some significant challenges posed in 

(ENTSO-G & ENTSO-E, 2018). Specifically, TwinP2G is expected to accelerate the learning curve effect 

within the P2G sector, allowing for experimentation with higher installed capacities at lower production rates 

of synthetic gas, hence contributing to the vision of much higher installed capacity by 2030. Finally, given that 

the current framework of regulations, market incentives and tariffs in Greece have not taken into account at all 

the opportunity of P2G, seasonal storage and other technologies. TwinP2G is expected to also promote the 

relevant national energy policies by establishing an innovative simulation platform that enables the 

experimentation with use cases that had been unfeasible until now. 
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